RNA-Seq Data Analysis ◾ 201
jpeg(‘heatmap2.jpg’)
my.contrasts
<- makeContrasts(conditiontumo-conditionnorm,levels=design)
fitq<-glmQLFit(yNorm, design)
qlfq<-glmQLFTest(fitq, contrast=my.contrasts)
DEGenes<-decideTestsDGE(qlfq,
adjust.method=”BH”, p.value=0.05, lfc=2)
logCPM <- cpm(yNorm, prior.count=2, log=TRUE)
rownames(logCPM) <- yNorm$genes$SYMBOL
colnames(logCPM) <- paste(yNorm$samples$group, 1:3, sep=”-”)
o <- order(qlfq$table$PValue)
logCPM <- logCPM[o[1:20],]
logCPM <- t(scale(t(logCPM)))
col.pan <- colorpanel(100, “blue”, “white”, “red”)
heatmap.2(logCPM, col=col.pan, Rowv=TRUE, scale=”none”,
trace=”none”, dendrogram=”both”, cexRow=1, cexCol=1.4,
margin=c(10,9), lhei=c(2,10), lwid=c(2,6))
dev.off()
FIGURE 5.27 Heatmap for the top 20 most differentially expressed genes across the samples.